Cervical Deformity

Important structural components that are involved in deformity developing

- Muscular
- Bony
- Ligamentous
- Innervation
Muscular Function

- Innervated by segmental spinal nerves
- Damaged/disrupted/non-functioning after posterior surgery
- Limit width of exposure
- Retract muscles gently
Bony Function

- Structural support
- Protection of spinal contents
- Articulate with adjacent vertebrae
- Musculoligamentous attachment!!!
Ligamentous Function

- Attach vertebrae to each other
- Attachment muscles to bone
- Provide the mobility of the spinal column
- More importance than recognized
Nerve Function

- Innervation of the muscles
- Tone and soft tissue support
- Tactile sensation
- Position sense
- Pain sensation
Post-laminectomy Kyphosis

- Child > adult
- 30-40% change postop
- > 4mm anterior translocation
- 20° flexion deformity
- “mechanical neck pain”
- “flat neck pain”
- loss of lordosis

Guigui, Spine 1988
Predisposing Factors

Alignment

Normal
Straight
Reverse
Swan Neck
“Normal” Lordotic Curve

20° Curve or >
Analysis of Cervical Spine Curvature in Patients with Cervical Spondylosis

Ulrich Batzdorf, M.D., and Alfred Batzdorf, B.M.E.

Department of Surgery (Neurosurgery), UCLA School of Medicine, Los Angeles (UB), and Consultant, Santa Rosa (AB), California

FIG. 1. Plot of a typical cervical spine radiogram showing the lines constructed to derive quantitative data for spinal curvature analysis.
Laminectomy for Central Cord Syndrome

Mechanical Subluxation?
- Evaluate with Flexion/extension

Prevention?
- Select correctly aligned patients
- Do reduction and fusion for kyphosis
- Limited muscle dissection
- Preserve facet capsules
- Preserve adjacent segment
Deformity Symptoms

- Neurologic symptoms - rare
- Progressive postural deformity
- ↓↓ ROM
- “chin on chest”
- Posterior paraspinal pain
Indications for Cervical Deformity Correction

- Neurological progression
- Deformity Progression
- Pain intolerance
- Fixed Severe Postural Deformity
Surgical Correction of Deformity

- Anterior correction
- Posterior Correction
- Anterior and Posterior correction
Anterior Cervical Deformity Correction

Vertebrectomy
- limited correction of kyphosis
- maximum 15° for each level
- ideal loading characteristics

Discectomy
- less correction for each level
- 5-10 for each level
- can maintain sagittal correction
Posterior Cervical Deformity Correction

- Previously limited correction due to non-constrained instrumentation
- New constrained instrumentation may offer some improvement in correction
- Bony structure may be limiting factor
- Structural limits if hardware/bone to maintain correction
Anterior and Posterior Deformity Correction

- Needed to make major intervention in cervical deformity
- Posterior osteotomies with decompression to gain correction
- Anterior column support to maintain correction
- Posterior tension band
- Still evolving these techniques in the cervical spine
Early Attempts at Cervical Deformity Correction
More Contemporary Attempts at Cervical Deformity Correction
Ankylosing spondylitis and fixed flexion-rotation deformity
CT 3D Reconstruction
Axial and Sagittal CT Scans
Mr B.L.

- 58 yo male with progressive myelopathy
- No axial or radicular pain
Mrs R.R.
Active 80 yo
Severe Neck Pain
Mild non-progressive myelopathy
69 yo female with mild gait imbalance

No neck pain

C4,5,6 degeneration
Swan Neck Deformity

Complex case and planning

How would you do this case now?

Front-back?

Back-front?

Back-front-back?
Conclusions

• Anterior correction has good load bearing
• Posterior correction has good tension band effect
• Anterior and Posterior correction has best success for major correction and maintaining the correction
What happens at the segments adjacent a fusion?
Forestier’s Disease Associated with a Retro-odontoid Mass Causing Cervicomedullary Compression

Naresh P. Patel MD
William Choi, MD
J. Patrick Johnson MD
Los Angeles, California
Introduction

Forestier’s Disease Synonyms

- Diffuse Idiopathic Skeletal Hyperostosis (DISH)
- Spondylosis Hyperostototica
- Ankylosing Hyperostosis
Introduction

Forestier’s Disease

- Progressive skeletal disorder
- Males
- 6th or 7th decade of life
- Marked calcification of the ALL
- Absence of other degenerative changes
Radiology

- Calcification along 4 contiguous vertebral bodies
- Absence of apophyseal joint ankylosis
- Absence sacroiliac joint sclerosis
Patient Population

- 5 patients
 - 4 males, 1 female
- Mean age: 73yrs, range: 56-86yrs
- No co-existing rheumatological, post-traumatic, or degenerative processes
- All patients were studied with pre and post-operative plain x-rays, CT scans, and MRIs
Fig 1. Preoperative x-ray showing marked calcification of the ALL.
Fig 2. Preoperative axial CT scan showing a retro-odontoid soft tissue mass.
Fig 3. Preoperative MRI revealing marked cervicomedullary compression.
TABLE 1. PATIENT PRESENTATION

<table>
<thead>
<tr>
<th>SIGNS/SYMPTOMS</th>
<th>NUMBER OF PATIENTS</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>- neck</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>- arm</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>- leg</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>Gait Disturbance</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Weakness</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>- upper extremities</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>- lower extremities</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Numbness</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>- upper extremities</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>- lower extremities</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>PATIENT</td>
<td>CVJ CANAL DIAMETER</td>
<td>CALCIFIED LEVELS</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1</td>
<td>5mm</td>
<td>C3-T1</td>
</tr>
<tr>
<td>2</td>
<td>7mm</td>
<td>C4-T2</td>
</tr>
<tr>
<td>3</td>
<td>7mm</td>
<td>C4-T7</td>
</tr>
<tr>
<td>4</td>
<td>4mm</td>
<td>C3-C6</td>
</tr>
<tr>
<td>5</td>
<td>4mm</td>
<td>C3-C6</td>
</tr>
</tbody>
</table>
Operative Procedure

- Transoral odontoidectomy
- Resection of the hypertrophic pannus
- Posterior occipitocervical fusion
Fig 4. Postoperative MRI revealing decompression of the CVJ.
Fig 5. Postoperative x-ray after occipitocervical instrumentation.
Pathology

- Odontoid: Normal bony architecture
- Fibrillation of hyaline and fibrocartilage
- Chondrocyte hyperplasia
- Chronic inflammation and fibrosis
- Granular calcification/ dystrophic ossification
Pathomechanics of Forestier’s Retro-odontoid Pannus

- Chronic strain on supporting tissues
 - Recurrent microtears: surrounding soft tissues
 - Continual microtears: periodontoid ligaments

- Healing Process
- Degenerative Response
- Inflammatory Response
 - Soft Tissue Growth
 - Ligamentous Hypertrophy
 - CVJ Compression Syndrome
Conclusions

- Forestier’s Disease may be associated with a retro-odontoid mass which can cause cervicomedullary compression.
- High index of suspicion for CVJ compression in patients with FD presenting with myelopathy.
- Transoral decompression and occipitocervical fusion is effective treatment for severely myelopathy.
- Posterior occipital-cervical fusion can be used in patients with no/minimal myelopathy.